

Midterm Review

General Information

- In-class exam on April 2nd 5:10pm-6:10pm
- 1 hour
- Close book, bring calculator
- I will join online, TAs will invigilate

Recap (Lecture 1: P1-P27)

- Neural Network Basics
 - MLP
 - Forward and backward propagation of MLP
 - Weight decay, dropout
 - The training optimizer: SGD, RMSProp, Adam
 - Multistage learning rate scheduler

Recap (Lecture 2: P1-P54)

- Conv2D operation
 - How the computation is performed
 - Input dimension, weight dimension, output dimension
 - Computational cost
- BatchNorm
 - Parameter folding-in during inference
- ResNet, MobileNet, ShuffletNet, SqueezeNet, DenseNet
 - Depthwise Separable Conv
 - Groupwise Convolution

Recap (Lecture 3: P1-P65, P73-P76, P79-P80)

• Transformers

- How the computation is performed and why
- Multi-headed attention, FFN
- LayerNorm, RMSNorm, GeLU
- Positional embedding, Word embedding
- Vision Transformer
 - How to convert image into visual tokens
- LLM
 - Prefilling, decoding
 - KV cache
- SSL
 - Contrastive learning
 - MAE

Recap (Lecture 4: P1-P70)

- Computational cost saving with pruning
 - CNN & Transformer
- Sparse matrix encoding
 - Bitmap, Run-length encoding, COO
- General pruning techniques
 - Magnitude pruning, gradient-based, Hessian-based pruning
 - Lasso
 - Taxonomy of Pruning
 - Network Slimming, N:M sparsity
 - Lottery ticket hypothesis
 - Cascade effect of pruning
- Transformer pruning
 - Token pruning

Head pruning

Taxonomy of Pruning

- Pruning techniques can be classified from different perspectives
 - Iterative pruning, zero-shot pruning
 - Structured pruning, unstructured pruning, N:M pruning
 - Weight pruning, activation pruning
 - Static pruning and dynamic pruning
 - Pruning for inference, pruning for training

Recap (Lecture 5: P1-P63)

- Basic Data Formats
 - Fixed point (INT), Floating point (FP), Block floating point (BFP)
- Quantization
 - Unsymmetrical & Symmetrical
 - Why fixed, FP, BFP & logarithm quantization can save computation?
- STE
- Taxonomy of Quantization
- Qunatization during training
 - Stochastic quantization
- Learnable adaptive quantization scheme

Taxonomy of Quantization

- Quantization techniques can be classified from different perspectives:
 - Weight quantization, activation quantization
 - Quantization aware training, post training quantization
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

Recap (Lecture 6: P1-P37)

- Distillation
 - Feature-Based Knowledge Distillation
 - Online distillation
 - Self distillation
 - Multi-teacher, multi-student, cross-modal

Recap (Lecture 7: P1-P32, P35-P37, P40-P56)

• Efficient training of DNNs

- Training data sampling
- Parameter sampling
- Pruning during training
- Quantization during training
- Efficient storage
- Parameter efficient finetuning
 - Lora, Bitfit, Adapter
- Federated Learning
 - Concept, Non-iid, system issue

Recap (Lecture 8: P10-P30, P39-P45)

- Distributed DNN Training
 - Parameter server, all-reduce
 - Data parallelism, model parallelism
- Distributed DNN Inference
 - Layerwise partition, spatial partition
- Speculative Decoding
 - Basic concept

